Peering into the most massive star in the Galaxy with near-infrared interferometry

Jose Groh (Geneva Observatory, Switzerland)

Collaborators

O. Absil (Liege), JP Berger (ESO), M. de Becker (Liege), JB Le Bouquin (Grenoble), J. Hillier (Pittsburgh), T. Madura (NASA/ GSFC), S. Owocki (Delaware), H. Sana (STScI), G. Weigelt (Bonn)

Fonds national suisse Schweizerischer Nationalfonds Fondo nazionale svizzero Swiss National Science Foundation

Massive stars bridge many fields of (astro)Physics

Star formation

- Chemical evolution
- Supernova, Black Holes, Neutron Stars
- Distant Universe (first stars, reionization, cosmology)
- Intergalactic, interstellar, circumstellar media
- High-energy physics, particle physics, ...
- Stellar evolution

(after evolutionary tracks in Groh+ 14)

(after evolutionary tracks in Groh+ 14)

OB-type LBV WR SN Ibc

LBVs detected as SN progenitors

LBV

(Kotak & Vink 06; Smith+ 07, 10, 11; Pastorello+ 07; Gal-Yam & Leonard 07, 09; Mauerhan+ 12; Fraser+ 13)

WR

SN lbc

Eta Carinae and the Homunculus nebula

Central Source: L ~ 5 x 10⁶ L_☉ M > 150 M_☉ M ~ 8 x10⁻⁴ M_☉/yr vinf ~ 420 km/s (Hillier+ 01, Groh+ 12)

Needs interferometry to probe the inner 10 mas:

- rotation
- mass loss
- binarity

prolate:
$$\frac{\rho(\theta)}{\rho_0} \propto \sqrt{1 - W^2 \sin^2 \theta}$$

$$\begin{bmatrix} 0 \\ 0 \\ 0 \\ -20 \end{bmatrix}$$

$$\begin{bmatrix} -20 \\ 0 \\ -20 \end{bmatrix}$$

$$\begin{bmatrix} -20 \\ 0 \\ 0 \\ -20 \end{bmatrix}$$

$$\begin{bmatrix} -20 \\ 0 \\ 0 \\ 0 \\ -20 \end{bmatrix}$$

prolate:
$$\frac{\rho(\theta)}{\rho_0} \propto \sqrt{1 - W^2 \sin^2 \theta}$$

$$\begin{bmatrix} 0 \\ 0 \\ 0 \\ -20 \end{bmatrix}$$

$$\begin{bmatrix} \sqrt{rot/V_{crit}} = 0.74 \\ 0 \\ -20 \end{bmatrix}$$

$$\begin{bmatrix} -20 \\ 0 \\ 0 \\ -20 \end{bmatrix}$$

$$\begin{bmatrix} -20 \\ 0 \\ 0 \\ 0 \\ -20 \end{bmatrix}$$

prolate:
$$\frac{\rho(\theta)}{\rho_0} \propto \sqrt{1 - W^2 \sin^2 \theta}$$

$$\begin{bmatrix} 20 \\ 0 \\ 0 \\ -20 \end{bmatrix}$$

$$\begin{bmatrix} \sqrt{rot/V_{crit}} = 0.80 \\ 0 \\ -20 \end{bmatrix}$$

$$\begin{bmatrix} -20 \\ 0 \\ 0 \\ -20 \end{bmatrix}$$

$$\begin{bmatrix} -20 \\ 0 \\ 0 \\ -20 \end{bmatrix}$$

prolate:
$$\frac{\rho(\theta)}{\rho_0} \propto \sqrt{1 - W^2 \sin^2 \theta}$$

$$\begin{bmatrix} 20 \\ 0 \\ 0 \\ -20 \end{bmatrix}$$

$$\begin{bmatrix} \sqrt{rot/V_{crit}} = 0.86 \\ 0 \\ -20 \end{bmatrix}$$

$$\begin{bmatrix} -20 \\ 0 \\ 0 \\ -20 \end{bmatrix}$$

$$\begin{bmatrix} -20 \\ 0 \\ 0 \\ -20 \end{bmatrix}$$

$$\begin{bmatrix} -20 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} -20 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} -20 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

prolate:
$$\frac{\rho(\theta)}{\rho_0} \propto \sqrt{1 - W^2 \sin^2 \theta}$$

$$V_{rot}/V_{crit} = 0.95$$

$$V_{rot}/V_{crit} = 0.95$$

$$-20$$

$$-20$$

$$-20$$

$$V_{rot}/V_{crit} = 0.95$$

$$-20$$

$$V_{rot}/V_{crit} = 0.95$$

prolate :
$$\frac{\rho(\theta)}{\rho_0} \propto \sqrt{1 - W^2 \sin^2 \theta}$$

$$\begin{bmatrix} 0 \\ 0 \\ 0 \\ -20 \end{bmatrix}$$

$$\begin{bmatrix} -20 \\ 0 \\ 0 \\ -20 \end{bmatrix}$$

$$\begin{bmatrix} -20 \\ 0 \\ 0 \\ -20 \end{bmatrix}$$

$$\begin{bmatrix} -20 \\ 0 \\ 0 \\ 0 \\ -20 \end{bmatrix}$$

Deviation from spherical symmetry depends on $W=v_{rot}/v_{crit}$ (Owocki et al. 1998):

Jose Groh - Peering into the most massive star in the Galaxy

prolate:
$$\frac{\rho(\theta)}{\rho_0} \propto \sqrt{1 - W^2 \sin^2 \theta}$$

$$V_{rot}/V_{crit} = 0.975$$

$$V_{rot}/V_{crit} = 0.975$$

$$V_{rot}/V_{crit} = 0.975$$

$$-20$$

$$-20$$

$$V_{rot}/V_{crit} = 0.975$$

$$-20$$

$$V_{rot}/V_{crit} = 0.975$$

Rotation: elongation of the K-band photosphere

(van Boekel+ 03; Kervella 07; Weigelt+07; Groh+10)

VLTI/VINCI beam-combination instrument Visibilities in the K-band continuum Two 0.35-m siderostats using 24m baseline

Rotation: elongation of the K-band photosphere

(van Boekel+ 03; Kervella 07; Weigelt+07; Groh+10)

VLTI/VINCI beam-combination instrument Visibilities in the K-band continuum Two 0.35-m siderostats using 24m baseline

Rotation: elongation of the K-band photosphere

(van Boekel+ 03; Kervella 07; Weigelt+07; Groh+10)

Homunculus i=41°; PA=131°

Geometric model PA~I34°; b/a=I.25

Eta Car A rapid rotator: rot. axis aligned with the Homunculus polar axis

Jose Groh - Peering into the most massive star in the Galaxy

Rotation: elongation of the K-band photosphere (van Boekel+ 03; Kervella 07; Weigelt+07; Groh+10)

Rad. Transf. VINCI+AMBER Homunculus **Geometric model** $v_{rot}/v_{crit}=0.77$ to 0.92 $i=41^{\circ}; PA=131^{\circ}$ PA~134°; b/a=1.25 i=60° to 90° PA=108° to 142° K-band image, W=0.85, i=75°, PA=130° 4.0 (b) DEC offset (mas) 2.0 0.0 -2.0-4.04.0 2.0 0.0 -2.0 -4.0 RA offset (mas) I/I_{mox} Eta Car A **Eta Car A** rapid rotator: rotation axis rapid rotator: rot. axis aligned misaligned with the Homunculus with the Homunculus polar axis Groh+10

Mass loss and extension of the photosphere

Strong stellar wind causes the photosphere to be formed in the wind

Eta Car

Cphot (set by free-free emission in the K-band)

Sun

Atmosphere

 Phydr

 Atmosphere

Stellar Wind

Mass loss and extension of the photosphere

Strong stellar wind causes the photosphere to be formed in the wind

Eta Car (M/2)

Cphot (set by free-free emission in the K-band)

hydr

Atmosphere

Stellar Wind

Mass loss and extension of the photosphere

Strong stellar wind causes the photosphere to be formed in the wind

Eta Car (M/2)

Jose Groh - Peering into the most massive star in the Galaxy

Eta Carinae mass loss

(van Boekel+03; Weigelt+07; Kervella 07; Groh+10, 12)

Eta Carinae mass loss

(van Boekel+03; Weigelt+07; Kervella 07; Groh+10, 12)

Mass-loss rate in 2002-2005: ~ 8.4 x 10⁻⁴ Msun/yr

Variability in Eta Carinae mass loss?

(Mehner+10, 12, 14 Corcoran+10, Gull+11, Groh+12a,b, Teodoro+12, Madura+13)

Mass-loss rate reduction by a factor of 2 in the last 10 yr?

Mehner+12

Probing changes in mass loss with VLTI/PIONIER

Data taken by O. Absil on 2012 Mar and 2013 Feb

Probing changes in mass loss with VLTI/PIONIER

Data taken by O. Absil on 2012 Mar and 2013 Feb

Binarity of Eta Carinae: effects are time dependent

Orbit: i=139°, ω=243°, PA=312°, e=0.9, P=5.54 years (Damineli 96; Madura+ 12)

<100

Binarity of Eta Carinae: effects are time dependent

Orbit: i=139°, ω=243°, PA=312°, e=0.9, P=5.54 years (Damineli 96; Madura+ 12)

Around periastron

<100

Jose Groh - Peering into the most massive star in the Galaxy

Changes in the density structure of the primary wind

Density cuts from 3D hydrodynamical SPH simulations of the Eta Car binary system (Madura +13): orbital period P=5.54 yr, eccentricity e=0.9.

Changes in the density structure of the primary wind

Density cuts from 3D hydrodynamical SPH simulations of the Eta Car binary system (Madura +13): orbital period P=5.54 yr, eccentricity e=0.9.

Changes in the density structure of the primary wind

Density cuts from 3D hydrodynamical SPH simulations of the Eta Car binary system (Madura +13): orbital period P=5.54 yr, eccentricity e=0.9.

Fast wind of the companion produces a **cavity** in the dense wind of the primary star

(Pittard & Corcoran 2002, Okazaki+ 08, Parkin+ 09, 11; Madura+ 12, 13).

Changes in the density structure of the primary wind

Density cuts from 3D hydrodynamical SPH simulations of the Eta Car binary system (Madura +13): orbital period P=5.54 yr, eccentricity e=0.9.

Fast wind of the companion produces a **cavity** in the dense wind of the primary star

(Pittard & Corcoran 2002, Okazaki+ 08, Parkin+ 09, 11; Madura+ 12, 13).

Effects of the companion star on Eta Car Near-infrared: geometry of the K-band continuum emitting region

A 2D model with i=41° (139°) and longitude of periastron of ω =243° provides a reasonably good fit to the VINCI observations at orbital phase ϕ =0.93.

⁽Groh et al. 2010a)

Effects of the companion star on Eta Car Near-infrared: geometry of the K-band continuum emitting region

A 2D model with i=41° (139°) and longitude of periastron of ω =243° provides a reasonably good fit to the VINCI observations at orbital phase ϕ =0.93.

⁽Groh et al. 2010a)

Binary model fits data taken at periastron

Take way messages

- Interferometry is key to probe rotation, mass loss, and binary effects in massive stars
- Eta Carinae is key for understanding how O stars become WR stars and how LBVs explode as SNe

Eta Carinae seen by interferometry:

- no changes in Mdot over last 15 years;
- rapidly-rotating primary star (~80% critical speed) seem at i~60-90deg (misaligned with Homunculus);
- strong binary effects (WWC) around periastron.

Interferometry is the way to go!

